

Indirizzi per la verifica climatica dei progetti infrastrutturali in Italia per il periodo 2021-2027

VII incontro

DPCoe-JASPERS-MASE

12 Luglio 2024, ore 10:00-13:00

Organizzazione e modalità relative alla valutazione della verifica climatica - follow-up riunioni IIV incontro 12 luglio 2024

Programma dell'incontro

- h. 10:00 Apertura (DPCOES)
- h. 10:05 Presentazione nuove Linee Guida e tools JASPERS (JASPERS)
 - Linee guida settoriali (trasporti, energia, rifiuti urbani) per la valutazione della resilienza climatica: - JASPERS sectoral adaptation guidance for climate resilience assessment.
 - Strumenti per la valutazione della resilienza climatica per progetti di piccole dimensioni: acquedotti e impianti per acque reflue, rigenerazione urbana, edifici. - *JASPERS tools for simplified climate resilience assessment for small projects.*
- h. 11:35 Sistemi di gestione del climate proofing a confronto: le esperienze delle Regioni (Regione Campania, Regione Lombardia,...)
- h. 12:45 Varie ed eventuali (DPCOES)
- h. 12:55 Chiusura

Presentazione nuove Linee Guida

e tools JASPERS (JASPERS)

Linee guida settoriali (trasporti, energia, rifiuti urbani) per la valutazione della resilienza climatica

> JASPERS sectoral adaptation guidance for climate resilience assessment

Support for the Development of Practical Sectoral Guidance on Climate Resilience Proofing

12th July 2024

Rallis Kourkoulis

SUPPORTING TOOLS

Guidance Document

- Overview of the Climate Resilience Proofing Methodology and practical guidance: Resources, Assessment steps, Scoring systems, Expected outputs and practical insights
- Sectoral Climate Resilience Guidance for 3 Sectors
 - -Sensitivities of the examined systems to key climate hazards
 - -Climate impacts and potential consequences (that are particular to examined sectors)
 - -Detailed list of adaptation measures A step-by-step climate proofing
 - example for a fictitious energy project

Climate Proofing Tool

- Developed for small-scale projects
- **3 instances:** Buildings, Water & Waste Projects, Urban Regeneration Projects
- Uses empirical indicators/questionnaires to describe exposure and climate sensitivities
- Automatically scores vulnerabilities/risks based on users' input
- Checks the efficiency of adaptation measures

SECTORAL GUIDANCE

ENERGY SECTOR

Electricity T&D Networks

Transformers, substations, conductors, overhead lines.

Wind Farms

Onshore/ offshore wind turbines. substations, cables, metering equipment

Solar Parks

Panels, Inverters, cables, metering equipment

District Heating

Combustion System, Boilers, Water tanks, fuel conveyor, control system

Green Hydrogen Electrolysers

Electroyser, Storage Tanks, Control system

Battery Energy Storage Systems

Batteries, Inverter, BMS, transformers

MUNICIPAL SOLID WASTE MANAGEMENT

Separate Waste Collection & **Transport Schemes**

Collection points, containers, vehicles, personnel, municipal roads

Recovery & Recycling Facility – Mechanical Separation

Mills, air sorters, blowers, controllers, Anaerobic Digestion (Storage/ feed

• equip., digester, separator, compressor, storage tanks) Aerobic Biological Treatment (Composting infra, sorting equip., storage facilities, filters, controllers)

Dumpsite Rehabilitation

Earthworks, geomembranes, metering equip., access roads

TRANSPORT SECTOR

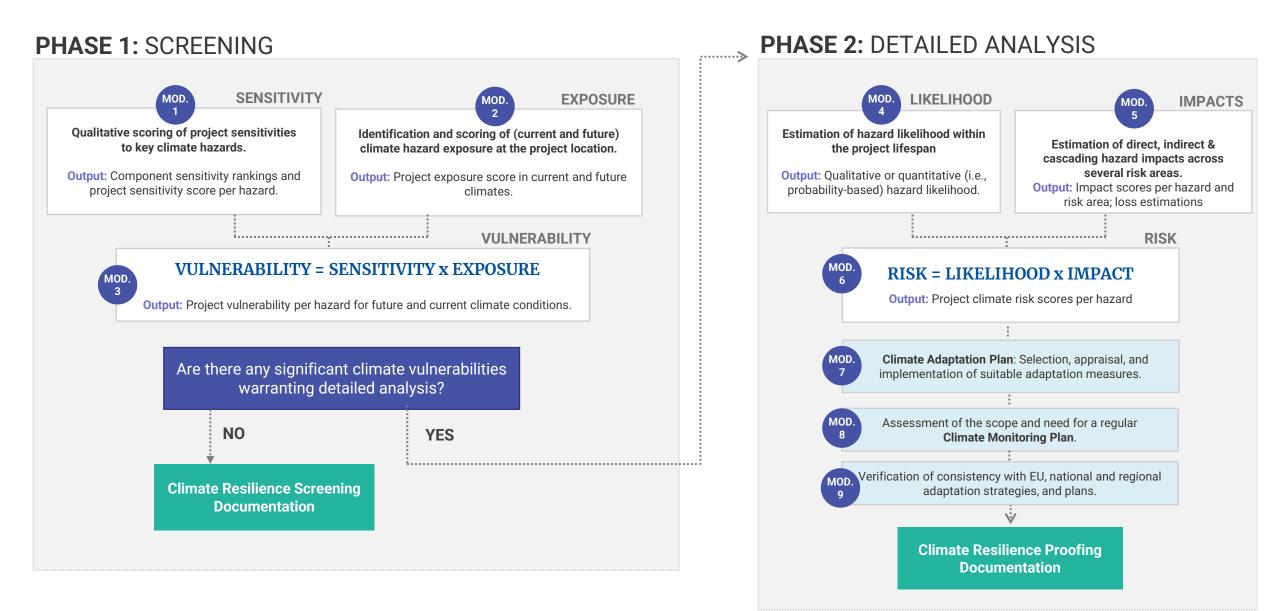
Urban Transport

Vehicles, stations, bicycle routes, parking lots & equipment, depots

Roads

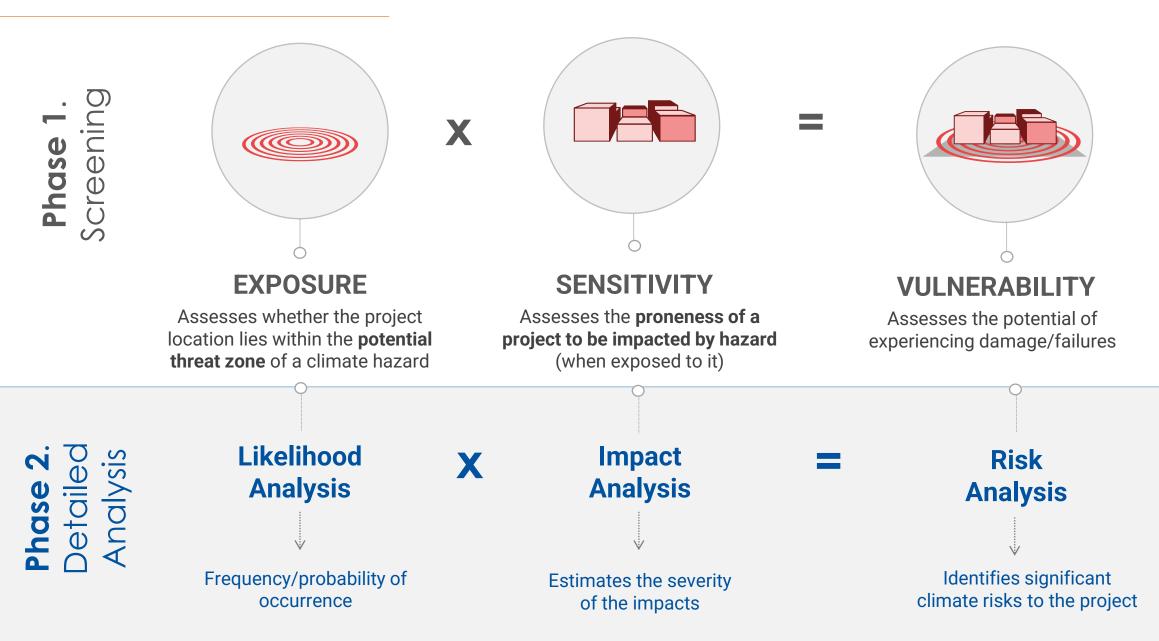
Pavements, Bridges, surface/subsurface drainage, earthworks

Railways


Trains, ballasts, railbeds, station buildings, waiting areas, signalling equipment.

• Ports

Wharves, piers, cargo storage, handling equip., transport links


CLIMATE PROOFING FLOWCHART

APPRAISAL METHODS

Climate Hazards

Acute Hazards

Heat waves Extreme temperature & Duration Cold spells / frost Extreme temperature & Duration Wildfires Drought Fog*

Storms including blizzards, and sand-storms Tornados Cyclone, hurricane, typhoon

Floods Including coastal, fluvial, pluvial floods Heavy rainfall & hail Duration, total downpour Extreme Tide and Storm Surge Extreme snowfall

Subsidence Soil Instabilities & landslides

Chronic Hazards

Changes in temperature patterns e.g. Annual/ monthly/daily average temperatures Temperature variability e.g. Maximum and minimum daily temperatures Permafrost thawing Freeze/thaw cycle*

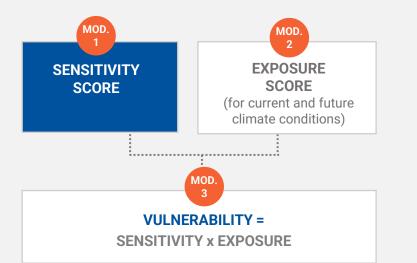
Changing wind patterns

-Maximum annual/monthly/daily wind speed -Maximum wind gust speeds per month/year

Changes in precipitation patterns Annual/Monthly precipitation Cloudiness Sea level rise Saline intrusion Salinity/Groundwater level

Coastal erosion Soil erosion

Temperature related


____ Wind
□___ related

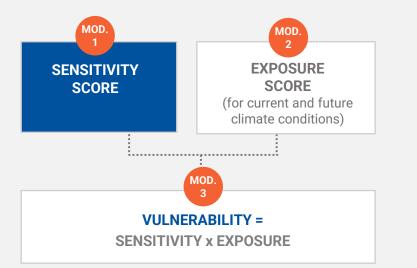
Water related

Soil

related

16

Module 1 • Sensitivity Analysis



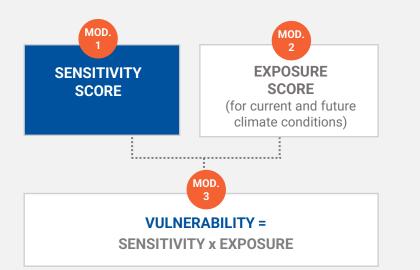
Objective: Determine the proneness of a project (or a project component) to be impacted by a hazard due to:

- Damaged assets operating at a sub-standard level
- Loss of essential input/outputs
- Unavailability of interconnected infrastructure

Qualitative description of sensitivity levels (per examined sector)

	Low	Medium	High
On-site Assets	Assets may experience minor damage	Assets may experience moderate damage	Assets including expensive assets/equipment may experience major damage or failure.
Operations	Non-critical operations may temporally be affected, but their repercussions are considered minimal.	Reduced functionality (or temporarily shutdown) of some utilities/ processes until inspections are performed.	Major equipment/facilities cannot operate and several process cannot be performed. The facility may need to completely shutdown until repairs are performed.
Input/Output	Not important effect on the energy production/ transmission/ distribution/ storage capacity.	Energy production/ transmission/ distribution/ storage capacity may temporarily decrease.	A major decrease in energy production/ transmission/ distribution/ storage may occur.
Interconnections	Insignificant/short in duration service disruptions of the supporting infrastructure	Loss of service of the supporting infrastructure affecting non-critical operations of the energy facility	Prolonged service disruptions impacting energy production

Module 1 • Sensitivity Analysis



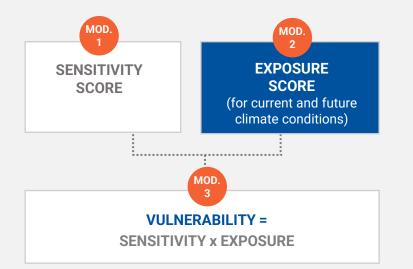
Objective: Determine the proneness of a project (or a project component) to be impacted by a hazard due to:

- Damaged assets operating at a sub-standard level
- Loss of essential input/outputs
- Unavailability of interconnected infrastructure

Output: Global Sensitivity score per Hazard

Climate Hazards	Global Score	On-site assets	Input	Output	Interdependent Systems
Hazard 1	High	High	Low	Low	Medium
Hazard 2	High	High	Low	Low	Medium

Module 1 • Sensitivity Analysis



Objective: Determine the proneness of a project (or a project component) to be impacted by a hazard due to:

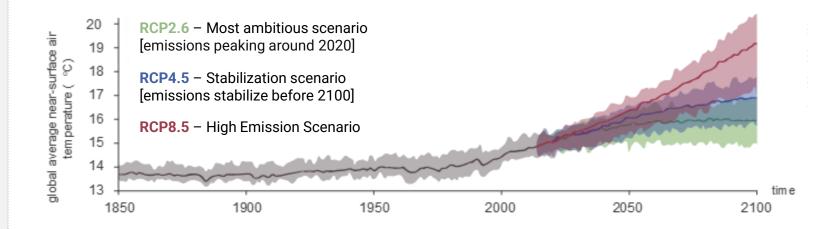
- Damaged assets operating at a sub-standard level
- Loss of essential input/outputs
- Unavailability of interconnected infrastructure

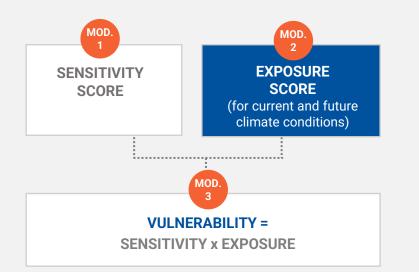
Sensitivities of Biomass Heating: Example

Hazard	Sensitivities						
	Short circuit or electronic damages when on-ground equipment gets wet.						
	Uplift failure/upheaval buckling of underground pipes creating operating issues.						
Heavy precipitation & Flooding	Increased heat-losses in the distribution grid, due to increased moisture of the surrounding soil.						
a rioouling	Increased biomass moisture (especially if stored in open space) reduces its energy value leading to decreased energy production.						
	Flooded biomass storages may disrupt heating/cooling operations.						
High	On-site assets & processes	Inputs	Outputs	Interdependent systems			
	Chemical corrosion of undergrou	nd pipes from sal	ne groundwater.				
Saline intrusion	Saline groundwater may create unfavourable buoyancy conditions for buried pipes causing structura damages.						
	Water input for thermal energy generation may be significantly affected by saline intrusion, impacting the overall efficiency of the system and the cost of energy .						
High	On-site assets & processes	Inputs	Outputs	Interdependent systems			

Module 2 • Exposure Analysis

Objective: To determine the climate hazards that are present or are expected to be present in the future in the project location.

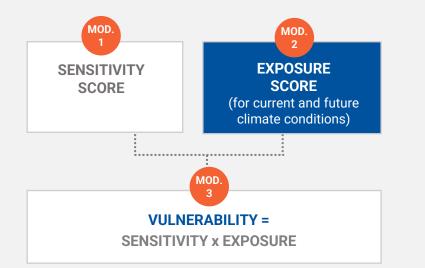

Select spatial/temporal scale


- Intended lifespan of a project
- Geographic boundaries of the assessment

Select climate change scenarios

- Consider the Project's Lifespan
- Consider Recommendations of National Guidance

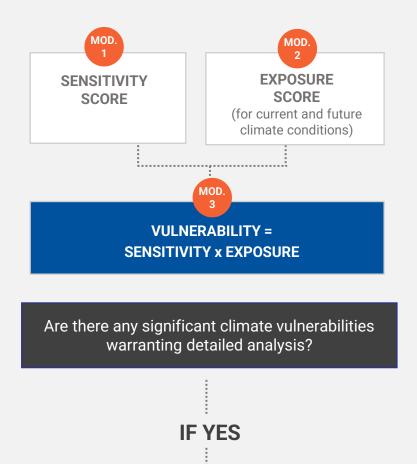
Module 2 • Exposure Analysis


Objective: To determine the climate hazards that are present or are expected to be present in the future in the project location.

Compilation of Climate Data

- Current Exposure: Historic record, local knowledge and experience, consultations with climate experts
- Future Exposure: National Climate Portals and other Climate Datasets

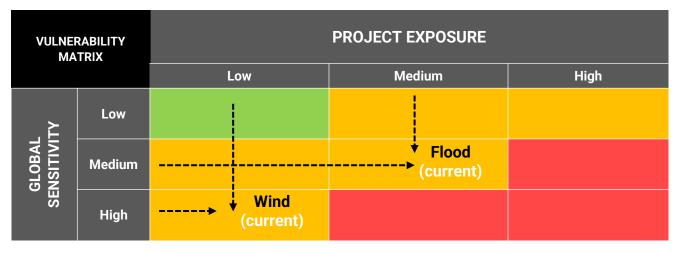
	Indicative Resources
Resources	Description
EEA provides an overview of the national and transnational climate atlases in Europe.	National atlases contain spatially explicit information on past and projected climate change (including for different climate variables and/or hazards).
Copernicus Climate Change Service	The Copernicus Climate Change Service (C3S) provides information on historical, current, and projected climate conditions both in Europe and globally through its Copernicus Climate Data Store (CDS).
WCRP CORDEX	The Coordinated Regional Climate Downscaling Experiment is a framework aimed at addressing climate information needs at the regional level. It produces ensemble of climate simulations based on multiple dynamical and empirical-statistical downscaling models.
<u>Flood Risk Area Viewer</u> (europa.eu)	Offers a tool that aims to increase awareness about flood risks. Users can observe regions of potentially significant flood risk and the varying approaches of flood protection across Member States
The European Draught Risk Atlas	Offers a detailed exploration of drought hazards across Europe, shedding light on their impacts on agriculture, public water supply, energy, and ecosystems.
<u>Climate Change Knowledge</u> Portal (CCKP)	Offers global data encompassing historical and projected climate information through country profiles and watershed views.


Module 2 • Exposure Analysis

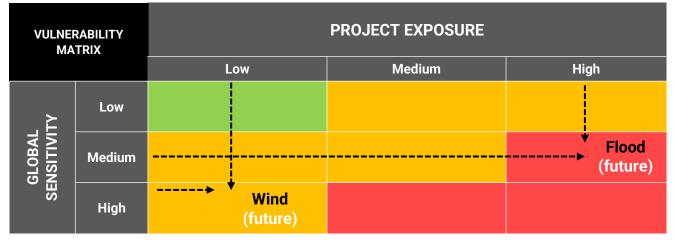
4

Objective: To determine the climate hazards that are present or are expected to be present in the future in the project location.

STEP. Indicative characterization of Exposure Level (Current & Future) Exposure Acute Hazards **Chronic Hazards** Level The project is located in an area where The rate of change is low. Observable hazard has occurred or expected to occur change within a time horizon exceeding the Low timeframe of the assessment. rarely The rate of change is moderate. The project is located in an area where Observable change within a time horizon hazard has occurred or expected to occur a Medium that may be observable during the project's few times during the project's lifetime lifetime The project is located in an area where The rate of change is rapid. A significant change is expected within the project's High hazard has occurred or expected to occur often during the project's lifetime. useful life.


Detailed assessment is required

Module 3 • Vulnerability Analysis



Objective: To determine the predisposition of a project to be adversely affected by climate change-induced hazards

For different hazards

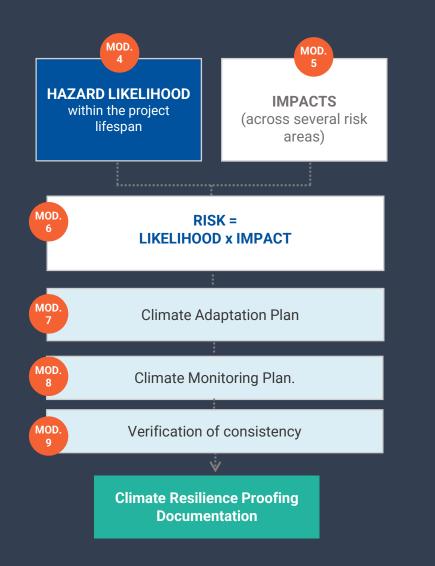
• For current and future climate

Module 4 • Likelihood Analysis

Objective: To determine the probability of a hazard to occur during the lifetime of the project

Qualitative assessment

Scores the likelihood of experiencing a **potentially disruptive event** within the specified timeframe


Level	Score	Qualitative	Probability of occurrence
Rare	1	Highly unlikely	0-10 %
Unlikely	2	Unlikely	11-30 %
Moderate	3	Possible	31-60 %
Likely	4	Likely	61-90 %
Almost certain	5	Very likely	91-100 %

Quantitative assessment

- Is performed by experts
- Entails site-specific hazard analysis
- Associates climate events with a probability of occurrence
- Is recommended for significant projects

How to assign likelihoods to future climate trends?

- Climate projections do not follow historic trendlines
- How the climate will evolve depends on future policies, technological developments, international agreements and climate sensitivities, all of which are **notoriously hard to predict**.

Future Likelihood

Current Likelihood x CCM

Π

RECOMMENDATION

- Expert judgement
- IPCC Guidance: correlates the confidence le quantitative expression of likelihood (e.g., x⁹ occurring)
- Small Projects Climate-Change Multipliers(C

Hazard indicator	Decrea	asing trend	Increasing trend		
	Low change	High change	Low change	High change	
Climate Change Multiplier	1.0	0.8	1.2	1.5	

Module 5 • Impact Analysis

Objective: To appraise/estimate the consequences of a hazard across several Risk Areas (RA): Damage/Operations • Safety & Health • Environment • Social Financial Impacts
 Reputation

Oualitative assessment

- Can be performed by non-experts
 - Scores the severity of impacts based on a qualitative description of impacts

1	2	3	4	5
Insignificant	Minor	Moderate	Major	Catastrophic
	Consequences can be alleviated by performing standard business continuity actions.	The project's operations are impacted requiring the activation of emergency protocols.	The project's operations are severely impacted. Restoration of business continuity requires extraordinary actions.	Disastrous consequences incl. permanent shut-down and/or total loss of the project's assets

Ouantitative assessment

- Is performed by experts
- Calculates Losses per event and annualized (aggregating losses from all possible events affecting the project normalized by their probability of occurrence)
- Converts Losses to Likelihood Scores

1	2	3	4	5
Insignificant	Minor	Moderate	Major	Catastrophic
Asset damage <5% of TRC	Asset damage 5-10% of TRC	Asset damage 10-25% of TRC	Asset damage 25-50% of TRC	Asset damage >50% of TRC
Immediate Recovery	Recovery time: few days	Recovery time: several days (e.g., 5-10days)	Recovery process is slow (e.g. 20-100 days)	Recovery time is indefinite.

Module 5 • Impact Analysis

Objective: To appraise/estimate the consequences of a hazard across several Risk Areas (RA): Damage/Operations • Safety & Health • Environment • Social • Financial Impacts • Reputation


RISK AREAS	1 Insignificant	2 Minor	3 Moderate	4 Major	5 Catastrophic
RA2: Safety & Health	First aid case	Minor injuries	Serious injuries or work loss	Major/multiple injuries and disabilities	Single or multiple fatalities
RA3: Environment	Impacts are localised in the source area	Impacts are localised within the site	Moderate harm with possible wider effects.	Significant harm with local effects. Long recovery.	Significant harm with widespread effect. Longer recovery > 1 year
RA4: Social	No negative social impacts	Localised temporary social impacts.	Localised, long-term social impacts.	Failure to protect vulnerable groups. Nation-wide, long- term social impacts.	Loss of social license to operate
RA5: Financial impacts	Direct and indirect costs < 2% of annual turnover.	< 2-10% of annual turnover	< 10-25% of the annual turnover	< 25-50% of annual turnover	> 50% of annual turnover.
RA6: Reputation	Local, temporary impacts on public opinion	Short-term impacts on public opinion	Negative coverage on local media	Nation-wide, short- term impacts on public opinion	Political instability
RA7: Cultural Heritage	Insignificant damage	Slight damage that can be recovered/ repaired	Serious damage with wider impact to tourism industry	Significant damage, nation-wide consequences	Permanent loss

Module 6 • Climate Risk Analysis

RISK = LIKELIHOOD x IMPACT

Module 7 • Climate Adaptation Plan

Selection of Adaptation Measures

project re-location

STRUCTURAL MEASURES

A physical change to the de

- Example adaptation measures for all sectors/typologies examined.
- Adaptation measures presented per hazard category /implementation phase
- Recommendations for Adaptive planning (measures implemented based on indicators monitoring)

NON-STRUCTURAL MEASU

Soft-engineering measures monitoring or early warning

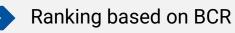
OPERATIONAL MEASURES

Closing/limiting service unde maintenance activities; back

Module 7 • Climate Adaptation Plan

Selection of Adaptation Measures

Appraisal of Adaptation Measures (indicative process)


Cost-Benefit Analysis (CBA*) - requires the monetization of benefits

Costs

- CAPEX of the adaptation - O&M costs

Benefits

- Loss reduction: reduced cost of repairs + reduced loss from operational disruption
- **Other Benefits**: environmental, health benefits etc

Expert Judgement and/or Multi-Criteria Analysis (MCA) – depending on the scale and importance of the project

Ranking based on weighting criteria

* Mostly applicable to large projects

Module 7 • Climate Adaptation Plan

Selection of Adaptation Measures

Appraisal of Adaptation Measures

Implementation Plan

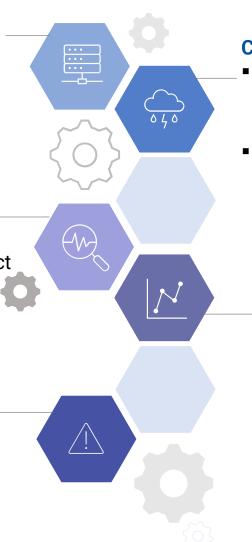
Immediate Adaptation (performed at the project outset)

- Risk of maladaptation

Adaptive (phased) Adaptation – Monitor the situation and only implement physical measures when the situation reaches a critical threshold

- Robust monitoring plan; Trigger-Action Plan; Continuous re-assessments

Module 8 • Monitoring Plans


Asset Management

A platform for storing, organizing, managing and reviewing data

Preventive Module

Monitors the live asset condition and applies advanced analytics to predict response in future climate events enabling preventive maintenance actions.

Early Warning System Gathers real-time hazard data, provides rapid damage diagnosis, and informs evacuation plans

Climate Registry

- Dataset of climate incidents (climate data; repair costs, performance logs)
- Climate Sensor indicators & thresholds allowing the classification of events using a standardized procedure

Climate Auditing

Measures the accomplishment of climateproofing targets using mutually agreed/objective KPIs

Module 9 • Verification of Consistency

Objective: To verify the project's compatibility with the country's resilient development pathway

Project Scope

The project aligns with the climate adaptation strategy outlined in NAPs (<u>https://climate-adapt.eea.europa.eu/en</u>), and relevant regional or local adaptation plans and strategies (as applicable)

Outcome

the project complies with the prescribed sector-specific criteria, addresses climate risks and has taken the necessary measures to avoid cases of maladaptation.

Presentazione nuove Linee Guida e tools JASPERS (JASPERS)

Strumenti per la valutazione della resilienza climatica per progetti di piccole dimensioni: acquedotti e impianti per acque reflue, rigenerazione urbana, edifici

> JASPERS tools for simplified climate resilience assessment for small projects

Climate Resilience Proofing Tool for small-scale projects

12th July 2024

Fani Gelagoti, PhD

WHY USING THE TOOL?

- **01** To perform a qualitative assessment of **climate threats** potentially affecting the project.
- 02 To observe the various ways the project may be impacted by climatic threats and understand their **potential impacts**.
- **03** To think of different ways to **make the infrastructure resilient** to the potential significant climate risks.

04 To comply with the EU Climate Proofing Guidance/ Regulation and become eligible for European funding (e.g., InvestEU, CEF, ERDF, JTF).

TOOL INSTANCES

SMALL SCALE-PROJECTS

The definitions of small-scale projects are subject to variations based on **country-specific context and regulation**.

KEY FEATURES

An excel-based tool featuring:

A set of questions used to **collect users' experiences with weather events** and based on the responses calculate **exposure scores**.

A set of questions used to **collect users' experiences with weather impacts** on similar projects/ structures and based on the responses calculate **sensitivity scores**.

A comprehensive list of **cost-efficient interventions 'Adaptation measures'** (particular to the hazard classes considered) that can be applied to increase climate resilience.

Build-in functions that can automatically compile the **risk profile of the project** to different hazard classes and threats – before and after implementation of the adaptation measures.

USER GUIDE

\ge

CLIMATE RESILIENCE PROOFING OF BUILDINGS

A TOOL FOR PROJECT PROMOTERS

WHAT IS CLIMATE-PROOFING FOR BUILDINGS?

A PLANNING CONSIDERATION

Climate proofing is the action taken to protect buildings and their occupants from climate change related events. The process aims to increase the resilience of buildings and minimize the potential negative impacts of climate change by employing, if required, an array of adaptation measures.

A 4-STEP PROCESS

that includes (1) recognition of potentially harmful weather conditions for the building and their occupants (currently and in the future); (2) identification of sensitive building components that are most prone to sustain damage or cease operation when exposed to climate change related events; (3) understanding of their potential consequences and the likelihood of experiencing them; (4) adaptation planning.

A LIFE-CYCLE APPROACH

that foresees the integration of adaptation measures in the planning, design and operation of the building.

WHY PERFORM CLIMATE-PROOFING?

- To proactively advise on measures and strategies that aim to increase the building's ability to withstand extreme weather events and adapt to the changing climate conditions of the future.
- → To fulfill the requirements set out in the legislation for soveral EU funds such as InvestEU, Connecting Europe Facility (CEP), European Regional Drivelopment Fund (ERDF), Cohesion Fund (CF) and the Just Transition Fund (JTF).
- To reduce the economic losses from weather and climate-related extremes.
- To ensure continuity of operation even under adverse climate conditions.
- Because the implementation of adaptation measures is less expensive when performed at the early planning stage of the project.

> Introduction to the Tool

- Illustrative presentation of climate impacts
- \rightarrow

 \rightarrow

- Description of Tool Capacities & Limitations
- \rightarrow
- Step-by-step instructions

Glossary of Climate Adaptation terms

HAZARD CLASSES

Extreme rainfall causing flooding

River and coastal floods submerging low-lying areas

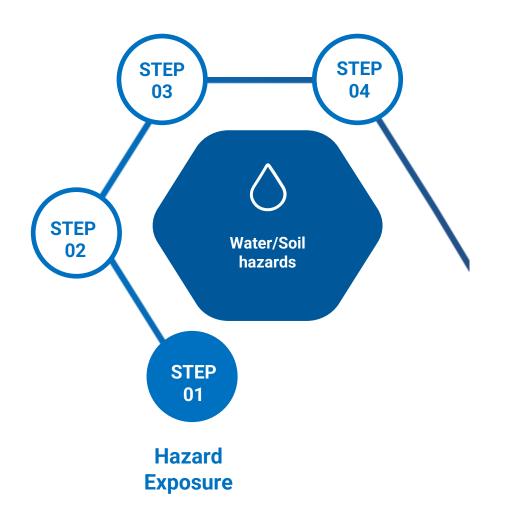
Long term **changes in the precipitation**

EXTREME WINDS

Wind Gusts, Tornadoes Hurricanes

TEMPERATURE HAZARDS

- Heatwaves and prolonged periods of droughts Cold spells, extreme snowfalls Wildfires
- Changes in the average annual temperatures and number of days with zero-crossing


SOIL HAZARDS

26

Landslides & land subsidence

 Seawater intrusion in the groundwater table of coastal areas

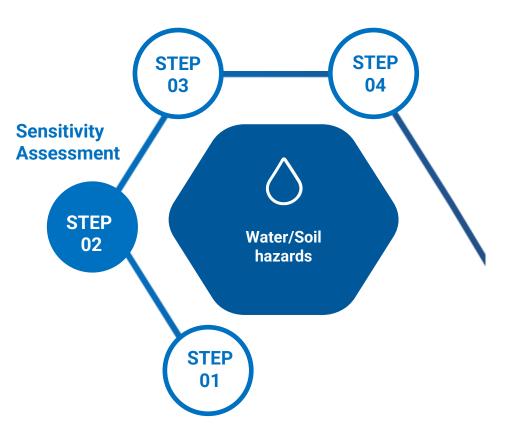
Assessment is performed in consecutive cycles & steps

Jaspersey Det Asistance to Support Projects in European Region

2.75

Flooding

Questions	[0-3]
	Provide Score
Is the building constructed on a floodplain, wetland or a low-lying barrier?	3
Is the building constructed on a river-bank?	3
Has the area experienced significant flooding in recent history?	3
Are the access routes or the supply chain of the facility crossing flood plains?	2


Climate Change Projections

Flood Exposure Score:

Questions	[0.8-1.5]	
Questions	Provide Score	
All sites: Will the region experience heavier and more frequent storms in the future?	1.3	-
Low-lying regions closed to river and lakes: Is the risk of river flooding expected to increase?	0	
Coastal sites: Is the risk of coastal flooding expected to increase?	0	
Future Flood Exposure Score:	3.00	•

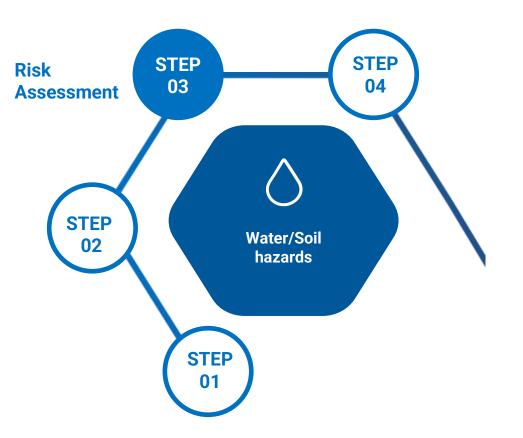
Assessment is performed in consecutive cycles & steps

Select Assessment Type: Single-Component or Multiple-Components

Select Project Type (from available categories)

Select 'Active' Components

Sensitivity Example from Buildings Question Score User inut Based on past experience, will the asset remain functional [0: Yes | 3: No] 3 or (sustain minor damage) in a flood? Does the design prevent water from entering the building [0: Yes | 3: No] 3 interior? Can the building withstand high water levels and hail? [0: Yes | 3: No] 3 Is the building elevated or is the office/shop located at a [0: 2nd floor or higher | 1 = 1st floor | 2: GF | 3: 2 higher floor? Basement] HIGH 2.75


Adaptive Capacity

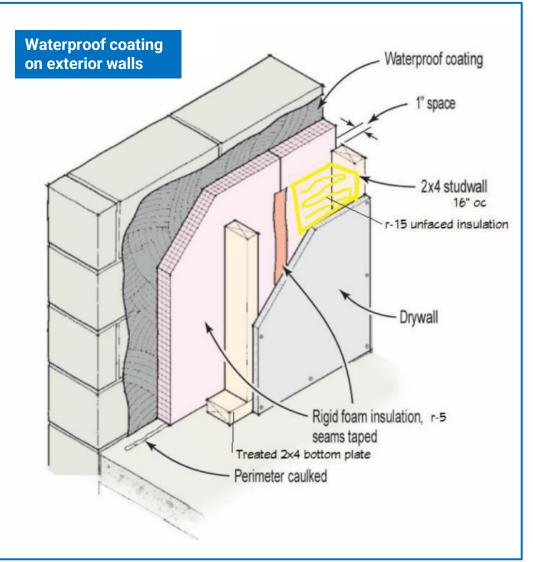
Question		Score	User inut
Have any of the recommend adaptation measures of been included in the design?		3 : All 2: Some 1: Few 0:No]	1
Is the building/flat equipped with battery-powered pumps?		[0: Yes 3 : No]	0
Updated Sensitivity Score:	HIG	н	2.3

Repeat the process for all 'Active' Components & Interconnected Infrastructure

Assessment is performed in consecutive cycles & steps

Assessment

Single-Component Assessment

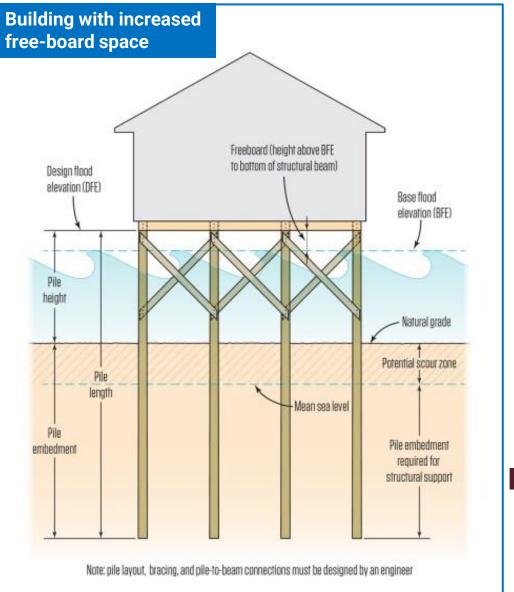

Component	Sensitivity	Exposure		Risk
	[0-3]	[0-3]	[0-9]	[Low Medium High]
Single Component - Simplified Assessment	2.3	3.0	6.87	High

Jaspers

Multiple-Component Assessment

	Sensitivity	Exposure		Risk
Component	[0-3]	[0-3]	[0-9]	[Low Medium High]
Building Shell	3	2.25	6.75	High
Heating Ventilation & Air-conditioning	3	2.25	6.75	High
IT equipment and Networks	2	2.25	4.5	Medium
Classrooms	1	2.25	2.25	Low
Indoor gym	3	2.25	6.75	High
Computer Labs	2	2.25	4.5	Medium
Schoolyard	2	2.25	6.75	Medium

				Interconnections
	Sensitivity	Exposure		Risk
Component	[0-3]	[0-3]	[0-9]	[Low Medium High]
Supply Network	0	2.25	0	Low
Transport Links	0	2.25	0	Low
Municipal storm & sewer systems	0	2.25	0	Low



Adaptation Measures

Jaspers

Review/ Select Adaptation Measures for Flood

	Adaptation Measures	Efficiency	Cost Estimate
	Ensure that the building is seated outside future storm paths and floodplains	High	Inexpensive (if performed during the planning stage)
lings	Suspend , raise, or floodproof E&M equipment and pipes above the base flood elevation level	Low	Inexpensive
n Builo	Install a pumping system ensuring availability of backup power	Low	Inexpensive
Excerpt from Buildings	Apply foundation/roof waterproofing (e.g., vapor barriers; land drainage)	High	Inexpensive
Exc	For buildings located in coastal regions: apply open foundation design and increase the free-board space above future flood levels.	High	Expensive
	Extend the fuel storage capacity for main and backup generators	High	Inexpensive

#1

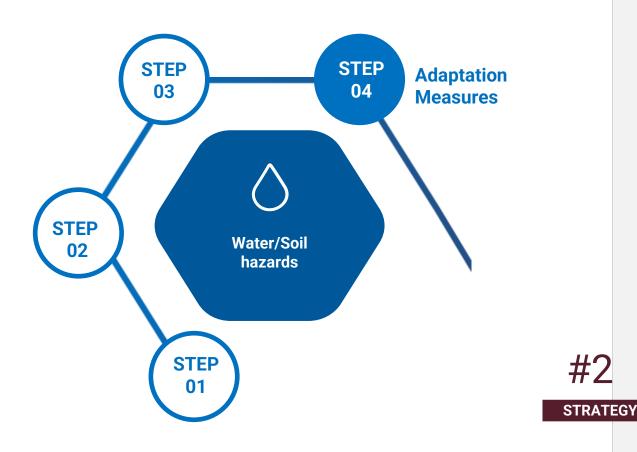
STRATEGY

Adaptation Measures

Review/ Select Adaptation Measures for Flood

Adaptation Measures	Efficiency	Cost Estimate
Ensure that the building is seated outside future storm paths and floodplains	High	Inexpensive (if performed during the planning stage)
Suspend, raise, or floodproof E&M equipment and pipes above the base flood elevation level	Low	Inexpensive
Install a pumping system ensuring availability of backup power	Low	Inexpensive
Apply foundation/roof waterproofing (e.g., vapor barriers; land drainage)	High	Inexpensive
For buildings located in coastal regions: apply open foundation design and increase the free-board space above future flood levels.	High	Expensive
Extend the fuel storage capacity for main and backup generators	High	Inexpensive
	Ensure that the building is seated outside future storm paths and floodplains Suspend, raise, or floodproof E&M equipment and pipes above the base flood elevation level Install a pumping system ensuring availability of backup power Apply foundation/roof waterproofing (e.g., vapor barriers; land drainage) For buildings located in coastal regions: apply open foundation design and increase the free- board space above future flood levels. Extend the fuel storage capacity for main and	Ensure that the building is seated outside future storm paths and floodplainsHighSuspend, raise, or floodproof E&M equipment and pipes above the base flood elevation levelLowInstall a pumping system ensuring availability of backup powerLowApply foundation/roof waterproofing (e.g., vapor barriers; land drainage)HighFor buildings located in coastal regions: apply open foundation design and increase the free- board space above future flood levels.HighExtend the fuel storage capacity for main andHigh

Check Performance of Adaptation

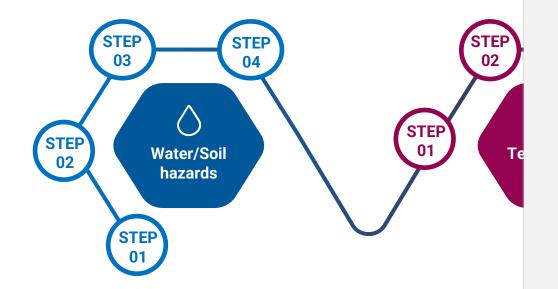

	Building Shell	HVAC	IT equip.	Classroo ms	Gym	Computer Labs	School yard
	Hlgh	Hlgh	Medium	Low	Hlgh	Medium	Medium
Foundation water-proofing	High				High	High	
Residual Risk	Low	High	Medium	Low	Low	Low	Medium

Assessment is performed in consecutive cycles & steps

Adaptation Measures

Review/ Select Adaptation Measures for Flood

	Adaptation Measures	Efficiency	Cost Estimate
	Ensure that the building is seated outside future storm paths and floodplains	High	Inexpensive (if performed during the planning stage)
Buildings	Suspend , raise, or floodproof E&M equipment and pipes above the base flood elevation level	Low	Inexpensive
n Builo	Install a pumping system ensuring availability of backup power	Low	Inexpensive
Excerpt from	Apply foundation/roof waterproofing (e.g., vapor barriers; land drainage)	High	Inexpensive
Exc	For buildings located in coastal regions: apply open foundation design and increase the free-board space above future flood levels.	High	Expensive
	Extend the fuel storage capacity for main and backup generators	High	Inexpensive


Check Performance of Adaptation

	Building Shell	HVAC	IT equip.	Classroo ms	Gym	Computer Labs	School yard
	Hlgh	Hlgh	Medium	Low	Hlgh	Medium	Medium
Foundation water-proofing	High				High	High	
Back-up generators		High	High				
Residual Risk	Low	Low	Low	Low	Low	Low	Medium

✓= Climate Proofing successful

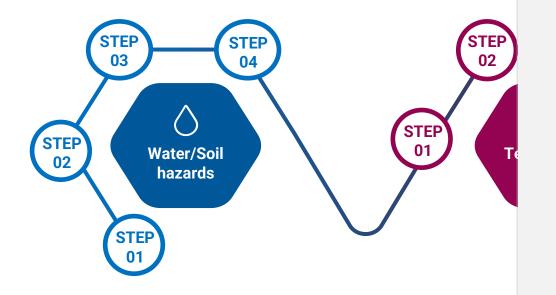
Jaspers 1

Assessment is performed in consecutive cycles & steps

OUTPUT

BEFORE

the implementation of Adaptation Measures


Climate Threats	Heatwaves	Wildfires	Extreme Cold	Flooding	Landslides	Extreme Wind
Average building Risk	Medium	Low	Medium	High	Low	Low

 For multiple-component assessments the tool provides a list of high-risk components for the various hazards examined.

Jaspers 👔

Assessment is performed in consecutive cycles & steps

OUTPUT

Jaspers 👔

BEFORE

the implementation of Adaptation Measures

Climate Threats	Heatwaves	Wildfires	Extreme Cold	Flooding	Landslides	Extreme Wind
Average building Risk	Medium	Low	Medium	High	Low	Low

the implementation of Adaptation Measures

Climate Threats	Heatwaves	Wildfires	Extreme Cold	Flooding	Landslides	Extreme Wind
Updated Risk	Low	Low	Low	Low	Low	Low

Summary of implemented adaptation measures for each hazard considered

Demonstration Example

A year-round restaurant in Athens with indoor and outdoor seating

Sistemi di gestione del

climate proofing a confronto:

le esperienze delle Regioni

Varie ed eventuali

Grazie della partecipazione